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Final Report 

23 September, 2001 

1 Outline 
The work included improving parallel scalability of the multilevel software pack- 
age ML, and concentrated on improving robustness and convergence properties 
of the Smoothed Aggregation Multilevel Iterative Solver (SAMISdat(AMG)) for 
solution of second order problems. Although both scalar and nonscalar prob- 
lems were targeted, the emphasis was on treatment of nonscalar problems of 
thin body elasticity such as encountered with ALE3D. 

2 ML smoother improvement 
As part of the work at LLNL this summer, the MLS type smoother used by 
SAMISdat(AMG) has been added as an option to Sandia Lab’s ML package. 

The MLS smoother is based on a Chebyshev polynomial smoother p minimiz- 
ing the expression ~ p ( z ) ~  over the interval (0, e(A)) and a first degree Chebyshev 
polynomial in A P ( A ) ~ .  Such smoothing procedure has previously been studied 
in the two-level domain decomposition context [4], where it allowed for a two- 
level substructuring method with optimal multigrid convergence independent of 
the coarse-grid size. 

The smoother p serves a double-duty in the smoothed aggregation methods 
as it is also useful in constructing the transfer operators. 

The advantage of using MLS smoother is that the serial and parallel imple- 
mentations are mathematically equivalent, regardless of the number of proces- 
sors. In addition, its parallehation relies on a matrix-vector product, which 
is typically easier to parallelize than multiplicative schemes such as the Gauss- 
Seidel method. Optimized kernel functions exist and can be utilized to expedite 
development. 

In the case of Gauss-Seidel method, the parallelism is often aided by taking 
a compromise approach in which true Gauss-Seidel is used on each processor, 
while interprocessor relaxation is performed in an additive fashion similar to 
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1 
1.175 
1.197 
1.258 180 
1.335 212 
1.414 266 
1.529 936 

1.140 167 
MLS 
161 
160 
161 
150 
146 
126 
123 

Table 1: Numbers of iterations in dependence on the number of processors used 

block Jacobi method. This is true of the current ML implementation of Gauss- 
Seidel method, which is not mathematically equivalent to the serial Gauss-Seidel 
method if multiple processors are used. 

As a result, the convergence of the multigrid using the MLS smoother scales 
better with the number of processors than when ML’s default symmetric Gauss- 
Seidel smoother is used. 

This is practically demonstrated in Table 1, which corresponds to an ALE3D 
benchmark problem of three concentric shells discretized using tetrahedra ele- 
ments. The problem has 11916 degrees of freedom and features numerical dif- 
ficulties ranging from high aspect ratios to jumps in material coefficients. For 
the purpose of testing, we required the Euclidean norm of the residual to be 
reduced by a factor of lol l .  In order to compare the convergence properties 
with respect to the number of processors, we tested the problem on 1, 2, 4, 
8, 16, 32 and 64 processors. The results of this comparison are presented in 
Table 1. For fairness of comparison, we have used two symmetric Gauss-Seidel 
iterations as the multigrid smoother, which requires roughly the same amount 
of computational work as when one iteration of MLS smoother is used. 

The results in Table 1 show that the number of iterations necessary to achieve 
the desired residual reduction grows with the number of processors if the de- 
fault smoother is used. This tendency is not apparent for small number of 
processors because the coarsening process used in ML produces higher number 
of aggregates as the number of processors increases. This leads to somewhat 
larger operator complexities with increasing processor numbers, which typically 
results in better convergence rates. 

In contrast, method using the MLS smoother benefits from this increase in 
operator complexity in terms of its convergence rate. 
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3 Feedback Improvement 
It is well known that the convergence properties of a multigrid solver critically 
depend on the coarse grids being able to accurately represent low energy com- 
ponents of the error. 

Formally, we need to guarantee that the transfer operator P between any 
two levels in the multigrid hierarchy satisfies the weak approximation property: 

E En3w E Ern such that llu - PVll 5 CalluIIA. (1) 

where m, n denote the dimensions of coarse and fine-grid problem, respectively. 
In addition, the coarse level basis functions must have small energy. Assum- 

ing this is satisfied, we have a convergence rate estimate 

1 
Ilei+lllA 5 (1 - Z)lleillA, 

where C depends on C,, on the smootness of the coarse space functions, and 
on the constant in the smoothing property. 

In order to satisfy (l), the zero-energy components corresponding to the 
discretized bilinear form must be resolved exactly by the intergrid transfer op- 
erators. For certain problems such as linear elasticity, these are either supplied 
by the discretization package or can be constructed by the user if nodal coordi- 
nates of the discretization nodes are available. 

The convergence bounds and the performance of the method can be improved 
if either the energy of the coarse space basis functions can be reduced or if the 
constant C, in the weak approximation property can be made smaller. The 
smoothed aggregation method provides a way of achieving both simultaneously. 

The transfer operators are based on a simple tentative prolongator. The task 
of the tentative prolongator is to assure satisfaction of the weak approximation 
property with a good constant. A prolongation smoother is applied to the 
basis functions given by the tentative prolongator to reduce their energy. The 
convergence rates can then be improved by either performing more smoothing 
on the tentative coarse basis or by enriching the set of tentative basis functions. 

The range of the prolongator can be enriched by adding explicitly computed 
eigen-vectors to the range of the prolongator. This has been used in [3] and is 
also the focus of the active AMGe research [2]. In [l], the coarse space enrich- 
ment based on the computed eigenvectors has been combined with adaptively 
applying more smoothing steps in creation of the transfer operators. All meth- 
ods of this class achieve good convergence rates for a class of difficult problems, 
but require local finite element matrices to be available to the solver and tend 
to be quite costly in terms of storage. 

In practice, the local finite element matrices may not be available either 
because the finite element package does not output them (for example, the Fi- 
nite Element Interface does not pass this information to the user), or because 
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the problem may have been discretized by other means than the finite element 
method. In addition there are situations where the discretization package pro- 
vides no easy way for passing even the zero-energy modes or the coordinates, or 
where the nature of the problem does not allow easy construction of the basis 
for the zero-energy modes based on the given information. 

Alterative ways to obtain the required information about the low-energy 
components corresponding to the bilinear form therefore are of great interest. 
Our current approach does not rely on local finite element matrices. Instead, a 
feedback mechanism is used in which the method attempts to determine compo- 
nents of the error which are not effectively reduced by the method at runtime. 
The transfer operators can then be corrected to allow for these components to 
be represented. When properly executed, the method should be able to calibrate 
itself for the particular problem. 

To achieve this, the setup process had to be rewritten to support the addition 
of the calibrated “kernel” components. The aggregation procedure had to be 
revised to make sure that the aggregates support the required number of low 
energy functions. 

At present, the calibration procedure expects an initial vector or a set of 
zero-energy vectors to be given on input. Based on this information, a multigrid 
hierarchy can be constructed. In order to recover the low-energy components 
not represented in the range of the prolongator, we use a small number of itera- 
tions of the multigrid method based on the current hierarchy to approximately 
solve the homegeneous problem Azo = 0. If the iteration converges with a con- 
vergence rate better than a specified tolerance, we stop the calibration process 
and use the current hierarchy to solve the problem Az = b. If the convergence 
stalls, however, we will modify the prolongator in a way which adds z o  into the 
rage of the prolongator. The calibration procedure is then restarted to evaluate 
the quality of the resulting multigrid method. 

We allow a maximum of Nc multigrid iterations to  be performed within 
each calibration step. The calibration procedure is terminated if the multigrid 
convergence rate is better than a given tolerance qc or if a number of calibration 
steps has reached a given number Csteps. 

We have conducted a number of computational experiments on 3D elasticity 
problems to observe the influence of the calibration procedure on recovering the 
convergence properties obtained using the full set of rigid body modes (RBM) 
in the definition of the prolongator. The experiments presented in Tables 2, 3, 
4 and 5 treat two ALE3D thin-body elasticity problems. For testing, the spec- 
ified set of low-energy modes consisted of the three piecewise constant vectors 
corresponding to the displacement fields. Once the calibration procedure was 
completed, the problem was solved by applying preconditioned conjugate gra- 
dient method with SAMISdat(AMG) as a preconditioner. The PCG iteration 
was terminated once the Euclidean norm of the residual was reduced by a factor 
of 1011. 

Tables 2 and 3 demonstrate the effects of using the calibration approach to 
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Prolongator range I iterations I cond 1 
6 RBM 96 I 86.39 I 

3 displacements + 0 calibrated I 230 I 574.30 

3 displacements + 1 calibrated 198 504.72 
3 displacements + 2 calibrated 186 460.01 
3 displacements + 3 calibrated 176 395.61 
3 displacements + 4 calibrated 163 318.64 
3 displacements + 5 calibrated 148 290.63 
3 displacements + 6 calibrated 126 209.25 

qc = 0.8, N, = 5 

qc = 0.9, N, = 20 

3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 159.54 

132.09 

3 displacements + 5 calibrated 
3 displacements + 6 calibrated 

133.05 
70.67 

Table 2: Convergence properties for problem with 11916 degrees of freedom; 2 
SGS pre-smoother and 2 SGS post-smoother used. 

improve convergence rate for a ALE3D problem used in Table 1. Tables 4 and 
5 present results of similar experiments for the same problem discretized on a 
finer grid with 158031 degrees of freedom. The first two lines in Tables 2, 3, 4 
and 5 corespond to a run based on the full set of 6 rigid body modes and on the 
piecewise constant displacements, respectively. The following lines correspond 
to the cases where the coarse space was enriched by adding new vectors obtained 
through calibration to the piecewise constant coarse space. 

The results show that the calibration enrichment can be used to recover 
the convergence rate obtained using the full set of rigid body modes, provided 
sufficiently many calibration steps are taken. The experiments also indicate that 
the calibration procedure using the solver based on MLS smoothing (Tables 3,5) 
performed better than that based on the symmetric Gauss-Seidel (Tables 2, 4). 
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Prolongator range 
6 RBM 

3 displacements + 0 calibrated 

3 displacements + 6 calibrated I 92 I 107.51 

3 displacements + 1 calibrated I 125 I 166.69 
qc = 0.9, Nc = 20 

iterations cond 
76 53.73 
139 203.97 

3 displacements + 2 calibrated 1 ll.l 
3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 
3 displacements + 6 calibrated 

qc = 0.99, 
3 displacements + 1 calibrated 

3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 

N, = 50 

131.50 
111.36 
93.24 
70.15 L 41.29 

126.89 
107.59 
82.90 
52.08 

3 displacements + 6 calibrated I 55 I 45.71 

Table 3: Convergence properties for problem with 11916 degrees of freedom; 1 
MLS pre-smoother and 1 MLS post-smoother used. 
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Prolongator range 
6 RBM 

3 disdacements + 0 calibrated 

iterations cond 
92 99.24 
213 507.76 

qC = 0.9, Nc = 20 
3 displacements + 1 calibrated I 173 I 361.01 

3 displacements + 1 calibrated 
3 displacements + 2 calibrated 
3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 
3 displacements + 6 calibrated 

178 375.46 
165 342.32 
152 296.21 
138 231.41 
129 204.05 
121 192.61 

3 displacements + 2 calibrated 
3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 
3 disdacements + 6 calibrated 

Table 4: Convergence properties for problem with 158031 degrees of freedom; 2 
SGS pre-smoother and 2 SGS post-smoother used. 

153 304.22 
135 247.16 
117 187.24 
105 161.20 
90 98.75 
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3 displacements + 1 calibrated 
3 displacements + 2 calibrated 
3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 
3 displacements + 6 calibrated 

166 344.44 
142 245.69 
109 137.37 
98 111.16 
82 79.65 
74 66.10 



6 RBM 
3 displacements + 0 calibrated 1 165 I 320.08 

3 displacements + 1 calibrated 256.92 

3 displacements + 3 calibrated 181.45 
3 displacements + 4 calibrated 159.88 

3 displacements + 6 calibrated 114.37 

qc = 0.8, N, = 5 

80 I 72.57 

qc = 0.9, N, = 20 
3 displacements + 1 calibrated 

3 displacements + 3 calibrated 
3 displacements + 4 calibrated 
3 displacements + 5 calibrated 
3 disdacements + 6 calibrated 

180.57 
134.28 
96.49 
71.73 
59.07 

3 displacements + 1 calibrated 242.27 

3 displacements + 3 calibrated 119.71 
3 displacements + 4 calibrated 85.23 
3 displacements + 5 calibrated 63.59 
3 displacements + 6 calibrated 57 35.68 

Table 5: Convergence properties for problem with 158031 degrees of freedom; 1 
MLS pre-smoother and 1 MLS post-smoother used. 
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4 Conclusion 
Both the parallel performance and our calibration experiments suggest that the 
MLS smoothing is a viable alternative to using the traditional Gauss-Seidel 
smoother. 

For problems where the discretization software does not provide means for 
constructing the rigid body modes (e.g., current FEI), the calibration procedure 
may be necessary to recover good convergence rates, especially with increasing 
size of the problem. Our computational experiments show that the feedback 
approach to multigrid setup can recover convergence properties obtained with 
known set of rigid body modes. 

The issue which still needs to be addressed is how to reduce the cost of 
the current setup procedure, where the multigrid coarse matrices have to be 
constructed every time a new calibrated vector is added. This cost can, of course, 
be amortized over multiple solutions when solving a problem with multiple right- 
hand sides. But it would be desirable to reduce the setup cost even with a single 
right-hand side. 

One possiblility currently under consideration is to use only the tentative 
setup in the calibration procedure. Another possiblility is to attempt to calibrate 
several vectors at the same time based on the initial V-cycle. These attempts 
are in development and will be treated elsewhere. 
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